Let x = (A^2 +B^2 -C^2 )/(2AB)
The expression is: √(1 - x^2 )
The other expression is: √(1) - √(x^2 ) = 1 - √(x^2 )
If the expressions are equal, then:
√(1-x^2 ) = 1 - √(x^2 )
1 - x^2 = 1 - 2√(x^2 ) + x^2
1 = 1 - 2√(x^2 ) + 2x^2
2√(x^2 ) = 2x^2
√(x^2 ) = x^2
If x ≥ 0:
x = x^2
x^2 - x = 0
x(x-1) = 0
x = 0 or x = 1
If x < 0:
-x = x^2
x^2 + x = 0
x(x+1) = 0
x = -1
Therefore: x = 0, x = -1, or x = 1.
Therefore, the equation is not always true.
The expression can be factorised: √(1-x^2 ) = √((1-x)(1+x)) = √(1-x) √(1+x)